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Abstract

For the given logical calculus we investigate the size of the fraction of
true formulas of a certain length n against the number of all formulas of
such length. We are especially interested in asymptotic behaviour of this
fraction when n tends to infinity. If the limit of the fraction exists it repre-
sents a number which we may call the density of truth for the investigated
logic. In this paper we apply this approach to the Dummett intermediate
linear logic (see [?]). Actually, this paper shows the exact density of this
logic and demonstrates that it covers a substantial part of classical propo-
sitional calculus. Despite using strictly mathematical means to solve all
discussed problems, this paper in fact, may have a philosophical impact on
understanding how much the phenomenon of truth is sporadic or frequent
in random mathematics sentences.

1 Introduction

The research described in this paper is a part of a project of quantitative investi-
gations in logic. We investigate the language F{→,¬} consisting of implicational-
negational formulas over one propositional variable. For some subclass A ⊂
F{→,¬} we may associate the density µ(A) as:

∗The second author have been supported by the State Committee for Scientific Research
(KBN ), research grant 7T11C 022 21
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µ(A) = lim
n→∞

#{t ∈ A : ‖t‖ = n}
#{t ∈ F{→,¬} : ‖t‖ = n} (1)

where ‖.‖ stands for the length of formula defined in the conventional way. The
number µ(A) if exists, is an asymptotic probability of finding a formula from
the class A among all formulas from F{→,¬} and the asymptotic density of the
set A in the set F{→,¬} as well.

The paper is a natural continuation of the problem concerning the density of
truth in classical logic of one variable. The result published in [?] proved the
existence of the density of truth for classical (and intuitionistic) logic of impli-
cation of one variable. In the paper [?] it is shown that the density also exists
for the implicational-negational formulas of one variable. In this note we prove
the similar result for Dummett’s intermediate linear logic LC.

2 Implicational - negational formulas

The language of implicational - negational formulas of one propositional variable
a consists of formulas F{→,¬} built from a by means of negation and implication
only.

a ∈ F{→,¬}

φ → ψ ∈ F{→,¬} iff φ ∈ F{→,¬} and ψ ∈ F{→,¬}

¬φ ∈ F{→,¬} iff φ ∈ F{→,¬}

We start this section by defining the Dummett logic LC semantically (see [?]).

Definition 1 By Dummett’s matrix we mean the infinite-valued characteristic
matrix Mω = 〈|Mω|,∼,⇒, {1}〉, where the set |Mω| = N ∪ {ω} is equipped with
two operations {∼,⇒} defined as:

∼ p =
{

ω if p < ω
1 if p = ω

p ⇒ q =
{

1 if p ≥ q
q if p < q

Definition 2 By the valuation of our language F{→,¬} in the matrix |Mω| we
mean any function v : F{→,¬} → |Mω| satisfying v(φ → ψ) = v(φ) ⇒ v(ψ) and
v(¬φ) =∼ v(φ). A formula α is a tautology iff v(α) = 1 for every valuation
v : F{→,¬} → |Mω|. By E(Mω) we mean the set of all tautologies in LC.

First, we divide the set of all formulas into several classes according to the
behaviour of each formula on all possible evaluations. Since we have formulas
built with exactly one propositional variable a we can enumerate valuations by
the elements of |Mω| as follows

vi(a) = i for all i ∈ |Mω| (2)
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By the sequence of valuations α we mean any function α : |Mω| → |Mω|.
Sequences of valuations are ordered componentwise by α ≤ β iff for all i ∈
|Mω| α(i) ≤ β(i) and form a poset. On sequences we may introduce operations
{∼,⇒} also componentwise by: α ⇒ β = γ if γ(i) = α(i) ⇒ β(i) and ∼ α = β if
β(i) =∼ α(i). Each sequence of valuations α defines uniquely the set of formulas
Fα ⊂ F{→,¬} which are undistinguishable by all valuations. Let

Fα =
{

φ ∈ F{→,¬} : ∀i ∈ |Mω| vi(φ) = α(i)
}

(3)

For example, the formula a belongs to the class Fα for the sequence α(i) =
i, ∀i ∈ |Mω|, while the formula ¬a → a lays in the class Fα for the sequence
α(i) = 1, ∀i ∈ N and α(ω) = ω. It is obvious that classes are disjoint so
Fα ∩ F β = ∅ for α 6= =

¯
eta and

⋃
α Fα = F{→,¬}. The sequence α is called

nonempty if the set of formulas Fα 6= ∅. Our first task is to separate all
nonempty sequences of valuations. We can easily see that the class Fα for the
sequence α(i) = i, ∀i ∈ |Mω| is nonempty since our initial formula a lays in
Fα. Closing the set of nonempty sequences of valuations by operations {∼,⇒}
we isolate exactly six sequences. Bellow we list all six classes together with
appropriate sequences. In order to simplify notations we are going to call the
classes A,B, C,D, E, G.

A = FαA αA(i) = ω
B = FαB αB(i) = i
C = FαC αC(i) = ω for i < ω and αC(ω) = 1
D = FαD αD(i) = i for i < ω and αD(ω) = 1
E = FαE αE(i) = 1 for i < ω and αE(ω) = ω
G = FαG αG(i) = 1

As we can see the class G establishes the set E(Mω) of all tautologies in LC.
Semantic operations {∼,⇒} on these classes defined by Fα ⇒ F β = Fα⇒β and
∼ Fα = F∼α can be displayed by the following truth table:

⇒ A B C D E G ∼
A G G G G G G G
B C G C G G G C
C E E G G E G E
D A E C G E G A
E C D C D G G C
G A B C D E G A

Table 1.

The order on classes Fα is defined as Fα ≤ Fα′ iff α ≥ α′. It forms the following
lattice diagram with the class of tautologies G being on the top:
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Diagram 1.

For technical reasons we are also going to consider two posets obtained from the
one above by appropriate identification. The first one is a three elements chain
obtained by identifying classes E and G, B and D as well as A and C. We will
name such classes as EG, BD and AC. The second one, four elements Boolean
algebra, is obtained by identifying classes D and G, and B and E. Accordingly
we will call such classes DG and BE. They have following diagrams:
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Diagram 2. Diagram 3.

The operations {∼,⇒} on new classes in new posets are given by the following
truth tables:

⇒ AC BD EG ∼
AC EG EG EG EG
BD AC EG EG AC
EG AC BD EG AC

⇒ A C BE DG ∼
A DG DG DG DG DG
C BE DG BE DG BE

BE C C DG DG C
DG A C BE DG A

Table 2. Table 3.

As we can observe, the first truth table describes operations in the Gödel 3
valued matrix, while the second one is a matrix of all valuations associated with
the standard classical logic of one variable.
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3 Counting Formulas

In this section we present some properties of numbers characterizing the amount
of formulas in different classes defined in our language. First, let us establish the
way of measuring the length of formulas. By ‖φ‖ we mean the length of formula
φ which is the total number of characters in the formula, including implication
and negation signs. Brackets, which are sometimes necessary, are not included
in the length of formula. Formally:

‖a‖ = 1
‖φ → ψ‖ = ‖φ‖+ ‖ψ‖+ 1

‖¬φ‖ = ‖φ‖+ 1.

Definition 3 By F{→,¬}
n we mean the set of formulas of the length n − 1.

Subclasses An, Bn, Cn, Dn, En, Gn and additional subclasses EGn, BDn, ACn,
DGn, BEn of formulas of the length n− 1 are defined accordingly by:

An = F{→,¬}
n ∩A Bn = F{→,¬}

n ∩B

Cn = F{→,¬}
n ∩ C Dn = F{→,¬}

n ∩D

En = F{→,¬}
n ∩ E Gn = F{→,¬}

n ∩G

EGn = F{→,¬}
n ∩ EG BDn = F{→,¬}

n ∩BD

ACn = F{→,¬}
n ∩AC DGn = F{→,¬}

n ∩DG

BEn = F{→,¬}
n ∩BE

We can see that for any n ∈ N the number of formulas in F{→,¬}
n is finite and

will be denoted as
∣∣∣F{→,¬}

n

∣∣∣ . Consequently all subclasses listed above are also
finite for all n ∈ N.

4 Generating functions

The main tool we use for dealing with asymptotics of sequences of numbers are
generating functions. A nice exposition of the method can be found in [?] and
[?]. Our main task in this paper is to determine limits of various sequences
of real numbers. For this purpose combinatorics has developed an extremely
powerful tool in the form of generating series and generating functions. Let
A = (A0, A1, A2, . . .) be a sequence of real numbers. The ordinary generating
series for A is the formal power series

∑∞
n=0 Anzn and, of course, the formal

power series is in one-to-one correspondence to the sequence. However, con-
sidering z as a complex variable, this series, as it is known from the theory of
analytic functions, converges uniformly to a function fA(z) in some open disc
{z ∈ C : |z| < R} of maximal diameter, and R ≥ 0 is called its radius of con-
vergence. So with the sequence A we can associate a complex function fA(z),
called the ordinary generating function for A, defined in a neighborhood of 0.
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This correspondence is one-to-one again (unless R = 0), since the expansion of
a complex function f(z), analytic in a neighborhood of z0, into a power series∑∞

n=0 An(z−z0)n is unique, and moreover, this series is the Taylor series, given
by

An =
1
n!

dnf

dzn
(z0). (4)

Many questions concerning the asymptotic behaviour of A can be efficiently
resolved by analyzing the behaviour of fA at the complex circle |z| = R.
This is the approach we take to determine the asymptotic fraction of tautologies
and many other classes of formulas among all formulas of a given length.
The key tool will be the following result due to Szegö [?] [Thm. 8.4]; see also [?]
[Thm. 5.3.2], which relates to the generating functions of numerical sequences
with limit of the fractions being investigated. For the technique of proof de-
scribed below please consult also [?] as well as [?]. We need the following much
simpler version of the Szegö lemma.

Lemma 4 Let v(z) be analytic in |z| < 1 with z = 1 the only singularity at the
circle |z| = 1. If v(z) in the vicinity of z = 1 has an expansion of the form

v(z) =
∑

p≥0

vp(1− z)
p
2 , (5)

where p > 0, and the branch chosen above for the expansion equals v(0) for
z = 0, then

[zn]{v(z)} = v1

(
1/2
n

)
(−1)n + O(n−2). (6)

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series
expansion of v(z).

5 Calculating generating functions

In this section we are going to find the generating function for the class of
tautologies G. First, recall the following two generating functions calculated in
[?] for sequences

∣∣∣F{→,¬}
n

∣∣∣ and |DGn|.

fF (z) =
1− z

2
−

√
(z + 1)(1− 3z)

2

fDG(z) =
1
8

(
8−

√
2
√

1 + 6z − z2 − Y −
√

2
√

1 + 6z + 7z2 − Y− (7)

2
√

1− 10z + 3z2 − Y +
√

1 + 6z − z2 − Y
√

1 + 6z + 7z2 − Y

)
,

where Y = (1− z)
√

(1 + z)(1− 3z)

Next, let us compute the generating function for the class EGn.
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Lemma 5 The numbers |ACn|, |BDn| and |EGn| are given by the recursions:

|AC0| = |AC1| = |AC2| = 0, |AC3| = 1

|ACn| = |BDn−1|+ |EGn−1|+
n−2∑

i=1

(|BDi|+ |EGi|)|AC=n− i| (8)

|BD0| = |BD1| = 0, |BD2| = 1

|BDn| =
n−2∑

i=1

|EGi||BDn−i| (9)

|EG0| = |EG1| = |EG2| = |EG3| = 0, |EG4| = 2
|EGn| = |Fn| − (|ACn|+ |BDn|). (10)

Proof. It follows easily from Table 2. Formulas from class AC can be obtained
as negations of formulas from classes BD and EG. This part is responsible for
the component |BDn−1|+ |EGn−1|. Analyzing Table 2 we also can notice that
the amount of formulas from AC in the form of implications depends only on
the same classes BD and EG and these from AC. This fact is described in
the fragment

∑n−2
i=1 (|BDi|+ |EGi|)|ACn−i|. So, equality (??) has been proven.

The formulas in the class BD can only be implications of formulas from classes
EG and BD. This gives (??). The last equation (?? ) is obvious.

Lemma 6 The generating function fBD for sequence of numbers |BDn| is:

fBD(z) =
1
8

(
23/4

√
(X − z + 1)

√
Y − z2 + 6z + 1 +

√
2(Y + 15z2 + 2z + 1)−

√
2
√

Y − z2 + 6z + 1−X + z − 1
)

, (11)

where X =
√

(z + 1)(1− 3z) and Y = (1− z)X.

Proof. First, we can observe the generating functions fAC , fBD i fEG for
numbers |ACn|, |BDn| and |EGn| satisfy the following equalities:

fAC = (fBD + fEG)z + (fBD + fEG)fAC (12)
fBD = fEGfBD + z2 (13)
fEG = fF − (fAC + fBD). (14)

The recurrence (??) corresponds to multiplication of power series and then gives
the equality (??). The quadratic term z2 in (??) corresponds to the first non-
zero coefficient in the power series of fBD. In the same manner we can see that
the fragment

∑n−2
i=1 (|BDi| + |EGi|)|ACn−i| corresponds to the multiplication

(fBD+fEG)fAC , while the term |BDn−1|+|EGn−1| corresponds to the function
(fBD + fEG)z. Solving the system of equations (??), (??) and (??) we obtain
(??). Note, that we choose the solution satisfying the boundary conditions
fBD(0) = 0. Now, we can attack the problem of finding the generating function
for class of tautologies G.
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It is easy to observe equation (??) from Table 1 and equations (??)-(??) from
Diagrams 1-3.

fB = fGfB + z2 (15)
fG = fDG − fD (16)
fD = fBD − fB (17)
fG = fDG − fBD + fB (18)

From (??) and (??) we get

fB = (fDG − fBD + fB)fB + z2. (19)

By solving (??) with boundary condition fB(0) = 0 we get function fB which is
presented here in terms of already known functions fDG and fBD see (??) and
(??):

fB =
1
2
(1− fDG + fBD −

√
(fDG − fBD − 1)2 − 4z2). (20)

Now, from (??) and (??) we calculate the function fG. For simplicity, we can
present it again in terms of functions fDG and fBD.

Lemma 7 Generating function for the sequence of tautologies is:

fG =
1
2
(fDG − fBD + 1−

√
(fDG − fBD − 1)2 − 4z2). (21)

6 From generating functions to asymptotic den-
sities

To apply the Szegö lemma we have to have functions which are analytic in the
open disc |z| < 1, and the nearest singularity is at z0 = 1. For that purpose we
are going to calibrate functions fF and fG in the following way:

f̂F (z) = fF

(
z
3

)
f̂DG(z) = fDG

(
z
3

)

f̂BD(z) = fBD

(
z
3

)
f̂G(z) = fG

(
z
3

)
.

After appropriate simplification of the above expressions we get the following:

f̂F (z) =
1
6

(
3− z −

√
3
√

(z + 3)(1− z)
)

(22)

f̂DG(z) =
1
24

(
24−

√
2
√

9 + 18z − z2 − Y −
√

2
√

9 + 18z + 7z2 − Y−

2
√

9− 30z + z2 − Y +
√

9 + 18z − z2 − Y
√

9 + 18z + 7z2 − Y

)
,(23)
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f̂BD(z) =
1
24

(
z − 3−

√
3X −

√
2
√

9 + 18z − z2 − Y + (24)

23/4

√
(
√

3X − z + 3)
√

9 + 18z − z2 − Y +
√

2(15z2 + 6z + 9− Y )
)

f̂G(z) =
1
2
(f̂DG(z)− f̂BD(z) + 1 = −

√
(f̂DG(z)− f̂BD(z)− 1)2 − 4

9
z2), (25)

where X =
√

(z + 3)(1− z) and Y =
√

3(= z − 3)X.

Note that relations between power series’ of appropriate functions are such as
[zn]{f(z)} =

(
[zn]{f̂(z)}

)
3n.

Lemma 8 z0 = 1 is the only singularity of f̂F and f̂G located in |z| ≤ 1.

Proof. It is easy to observe the function f̂F (z) has only singularities at z = 1
and z = −3. To make sure the function f̂G(z) has the nearest one at z = 1, we
had to solve the following complicated equations:

9 + 18z − z2 − Y = 0 (26)
9 + 18z + 7z2 − Y = 0 (27)

9− 30z + z2 − Y +
√

9 + 18z − z2 − Y
√

9 + 18z + 7z2 − Y = 0 (28)

(
√

3X − z + 3)
√

9 + 18z − z2 − Y +
√

2(15z2 + 6z + 9− Y ) = 0 (29)

(f̂DG(z)− f̂BD(z)− 1)2 − 4
9
z2 = 0 (30)

where X =
√

(z + 3)(1− z) and Y =
√

3(z− = 3)X.

To do that we had to extensively used the Mathematica package and it occurred
that all solutions which are different from z = 1 are situated outside the disc
|z| ≤ 1.

Theorem 9 Expansions of functions f̂F and f̂B in a neighborhood of z = 1 are
as follows:

f̂F (z) = f0 + f1

√
1− z + ...

f̂G(z) = g0 + g1

√
1− z + ...

where

f0 =
1
3
, f1 = − 1√

3
, g0 = 0.094 . . . , g1 = −0.228172 . . .

Proof. The coefficients f0 and f1 have been found in [?] using the Mathematica
package. Similarly we found g0 i g1. Now, we can calculate the density of
implicational-negational part of Dummett’s linear logic of one variable. By
applying Szegö lemma we get as follows.
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Theorem 10

µ(G) = lim
n→∞

|Gn|
|F{→,¬}

n |
= lim

n→∞
(g1

(
1/2
n

)
(−1)n + O(n−2))3n

(f1

(
1/2
n

)
(−1)n + O(n−2))3n

= lim
n→∞

g1

f1
(1 + o(1)) =

g1

f1
≈ 0.395205

As we know Dummett’s logic is a proper subset of classical one. Finally, the
result above can be employed to calculate the size of fragment of Dummett’s
logic inside classical logic. The density of the implicational-negational part of
the classical logic of one variable is about 0.4232 (see [?]). So, the probability
of finding a linear tautology among classical ones is the following.

Theorem 11 The relative probability of finding a linear tautology among clas-
sical ones is more then 93 %.

Proof. Class DG in Diagram 3 is in fact the class of classical tautologies (see [?]).
We already know asymptotics limn→∞

|Gn|
|F{→,¬}

n | and limn→∞
|DGn|
|F{→,¬}

n | therefore

lim
n→∞

|Gn|
|DGn| =

limn→∞
|Gn|

|F{→,¬}
n |

limn→∞
|DGn|
|F{→,¬}

n |
=

0.395305 . . .

0.44232 . . .
≈ 93%.
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