CORRECTION OF THE ARTICLE: ON LINEAR BROUWERIAN LOGICS

ZOFIA KOSTRZYCKA

1. A SHORTCUT

Definition 1. We say that a frame $\langle W, R \rangle$ consists of linearly ordered blocks if the following two conditions hold:

- $(L1) \quad B_1 \cap B_2 \cap B_3 = \emptyset,$
- (L2) $(B_1 \cap B_2 \neq \emptyset \& B_2 \cap B_3 \neq \emptyset) \Rightarrow (B_1 \cap B_2) \cup (B_2 \cap B_3) = B_2$ for any three distinct blocks B_1, B_2, B_3

It occurred that the generalized notion of linearity for reflexive and symmetric structures has an adequate syntactic characterization [1]. The following formula is given there:

$$(3') := \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r).$$

and the logic: $\mathbf{KTB.3'} := \mathbf{KTB} \oplus (3')$ is considered. In [1], it is also proven that:

Theorem 1. [Theorem 3.1 from [1]] Logic **KTB.3**' is complete with respect to the class of reflexive and symmetric frames with linearly ordered blocks. Logic **KTB.3**' has f.m.p.

THERE IS A MISTAKE IN THE ABOVE THEOREM. BELOW I GIVE ITS CORRECTION. WE ADD A NEW AXIOM:

$$(A) := \Box((\Box p \land q) \to r) \lor \Box((\Box q \land r) \to s) \lor \Box((\Box r \land s \land \Diamond \neg s) \to p) \lor \lor \Box((\Box s \land p \land \Diamond \neg p) \to q).$$

AND DEFINE THE LOGIC: **KTB.3'A** := **KTB** \oplus (3') \oplus (A).

Theorem 2. Logic **KTB.3'A** is complete with respect to the class of reflexive and symmetric frames with linearly ordered blocks.

Proof. First we prove the soundness of **KTB.3'A** with respect to the appropriate relational structures:

If $\vdash_{KTB.3'A} \alpha$, then $\mathfrak{F} \models \alpha$; for any Kripke frame $\mathfrak{F} \in \mathcal{LOB}$ and any formula α .

ZOFIA KOSTRZYCKA

We need to show that in each reflexive, symmetric and linearly ordered Kripke frame, the formulas (3') and (A) are valid. Suppose, on the contrary, that there is a frame $\mathfrak{F} = \langle W, R \rangle$ from \mathcal{LOB} such that $\mathfrak{F} \not\models (3')$. Then there is a point $x \in W$ such that: $x \not\models \Box p \lor \Box (\Box p \to \Box q) \lor \Box ((\Box p \land \Box q) \to r)$. Hence

- (1) $x \not\models \Box p$ and
- (2) $x \not\models \Box(\Box p \rightarrow \Box q)$, and
- (3) $x \not\models \Box((\Box p \land \Box q) \to r).$

From (1) we conclude that there is a point $y_1 \in W$, xRy_1 such that $y_1 \not\models p$.

From (2) we conclude that there is a point $y_2 \in W$, xRy_2 such that $y_2 \not\models \Box p \rightarrow \Box q$. Then $y_2 \not\models \Box p$ and $y_2 \not\models \Box q$. Because $y_1 \not\models p$ and $y_2 \not\models \Box p$ then we conclude that $\neg y_2Ry_1$. Because xRy_2 and R is symmetric we get $x \not\models p$ (hence $y_1 \neq x$ and $y_2 \neq x$). Since $y_2 \not\models \Box q$ then there is also a point $y_3 \in W$, y_2Ry_3 such that $y_3 \not\models q$ (y_3 does not have to be distinct from y_2).

From (3) we get that there is a point $y_4 \in W$, xRy_4 such that $y_4 \not\models (\Box p \land \Box q) \rightarrow r$. Hence $y_4 \models \Box p \land \Box q$ and $y_4 \not\models r$. Then $y_4 \models \Box p$ and $y_4 \models \Box q$. We will show that $y_4 \neq y_i$ for i = 1, 2, 3 and $y_4 \neq x$.

- Because $y_4 \models \Box p$ then from reflexivity of R we get $y_4 \models p$. We know that $y_1 \not\models p$. Then $y_4 \neq y_1$.
- Since $y_4 \models \Box q$ and $y_2 \not\models \Box q$ then $y_4 \neq y_2$.
- Suppose that $y_3 \neq y_2$. We know that $y_4 \models \Box q$ and $y_3 \not\models q$. By reflexivity of R we conclude that $y_4 \neq y_3$.
- We have assume that $x \not\models \Box p$ and $y_4 \models \Box p$. Then $y_4 \neq x$.

Further we will show that $\neg y_4 R y_i$ for i = 1, 3 (under the assumption that $y_3 \neq y_2$) and $x \models q$ and hence $y_3 \neq x$.

- Suppose, on the contrary, that $y_4 R y_1$. Since $y_4 \models \Box p$ then $y_1 \models p$. But this is a contradiction.
- Suppose, on the contrary, that y_4Ry_3 . Because $y_4 \models \Box q$ then we would obtain $y_3 \models q$. A contradiction.
- Because $y_4 \models \Box q$ and xRy_4 (and by symmetry of R) we get $x \models q$. Then $x \neq y_3$.

The following two situations are possible:

- y_4Ry_2 . Then $y_2 \models q$, so $y_3 \neq y_2$. We get a frame with a sub-frame identical with the one presented in Diagram 1. The condition (L2) of linearity fails in this case.
- $\neg y_4 R y_2$. Then $\{x, y_4\} \subset B_1$, $\{x, y_1\} \subset B_2$ and $\{x, y_2\} \subset B_3$ and $y_4 \notin B_3$, $y_2 \notin B_1$, $y_1 \notin B_1$, for three blocks B_1 , B_2 and B_3 . Hence the blocks are distinct. The situation is similar to

 $\mathbf{2}$

the one presented in Diagram 2. We get $x \in B_1 \cap B_2 \cap B_3$. The condition (L1) of linearity fails. It is not important here, if $y_3 Rx$ or $y_3 Ry_1$.

Let us add that if $y_3 = y_2$ then $y_2 \not\models q$. Then $\neg y_4 R y_2$ (since $y_4 \models \Box q$). As above, the condition (L1) of linearity fails.

Diagram 1.

Diagram 2.

Suppose then that the formula (A) fails in some $\mathfrak{F} = \langle W, R \rangle \in \mathcal{LOB}$. There is a point $x \in W$ such that

(1) $x \not\models \Box((\Box p \land q) \to r)$ and (2) $x \not\models \Box((\Box q \land r \land) \rightarrow s)$, and (3) $x \not\models \Box((\Box r \land s \land \Diamond \neg s) \rightarrow p)$, and (4) $x \not\models \Box((\Box s \land p \land \Diamond \neg p) \rightarrow q)$

From (1) we conclude that there is a point $y_1 \in W$, xRy_1 such that $y_1 \not\models (\Box p \land q) \rightarrow r)$. Hence $y_1 \models \Box p, y_1 \models q$ and $y_1 \not\models r$.

Similarly from (2) we conclude that there is a point $y_2 \in W$, xRy_2 such that $y_2 \not\models (\Box q \land r) \rightarrow s$). Hence $y_2 \models \Box q, y_2 \models r$, and $y_2 \not\models s$.

Obviously, $y_2 \neq y_1$.

Similarly from (3) we conclude that there is a point $y_3 \in W$, xRy_3 such that $y_3 \not\models (\Box r \land s \land \Diamond \neg s) \rightarrow p$). Hence $y_3 \models \Box r$, $y_3 \models s$, $y_3 \models \Diamond \neg s$ and $y_3 \not\models p$.

Obviously, $y_3 \neq y_1$ and $y_3 \neq y_2$.

Similarly from (4) we conclude that there is a point $y_4 \in W$, xRy_4 such that $y_4 \not\models (\Box s \land p \land \Diamond \neg p) \rightarrow q$. Hence $y_4 \models \Box s$, $y_4 \models p$ and $y_4 \models \Diamond \neg p$ and $y_4 \not\models q$.

Obviously: $y_4 \neq y_i$ for i = 1, 2, 3.

Diagram 3

Further we notice that: $\neg y_1 R y_3$ and $\neg y_2 R y_4$ (and symmetrically $\neg y_3 R y_1$ and $\neg y_4 R y_2$) because $y_1 \models \Box p$ and $y_3 \not\models p$ as well as $y_2 \models \Box q$ and $y_4 \not\models q$. Since

$$(*) y_2 \models \Diamond \neg s$$
$$(**) y_4 \models \Diamond \neg p$$

then the following four situations are possible:

- (1) y_2Ry_3 and y_3Ry_4 (then (*) and (**) are fulfilled). Because $\neg y_1Ry_3$ and $\neg y_2Ry_4$ then exist three distinct blocks B_1, B_2, B_3 such that $\{x, y_2, y_3\} \subset B_1$, $\{x, y_3, y_4\} \subset B_2$ and $\{x, y_1\} \subset B_3$. Also $y_2 \notin B_2$, $y_4 \notin B_1$ and $y_1 \notin B_1 \cup B_2$. Then $B_1 \cap B_2 \cap B_3 \neq \emptyset$. A contradiction with (L1). See Diagram 4.
- (2) y_2Ry_3 and $\neg y_3Ry_4$ (then (*) is fulfilled). To fulfil (**) we need a new point z such that zRy_4 and $z \not\models p$. Obviously $\neg zRy_1$.
 - (a) Suppose that $\neg y_1 R y_4$. Then there exist three distinct blocks B_1, B_2, B_3 such that $\{x, y_2, y_3\} \subset B_1, \{x, y_4\} \subset B_2$ and $\{x, y_1\} \subset B_3$. Also $y_2 \notin B_2, y_4 \notin B_1$ and $y_1 \notin B_1 \cup B_2$. Then $x \in B_1 \cap B_2 \cap B_3$. A contradiction with (L1). It does not depend on wheatear zRx or $\neg zRx$ nor wheatear zRy_i or $\neg zRy_i$ for i = 2, 3. See Diagram 5.

 $\mathbf{4}$

Diagram 5

- (b) Suppose that $y_1 R y_4$.
 - (i) If y_1Ry_2 then there exist three distinct blocks B_1, B_2, B_3 such that $\{x, y_1, y_2\} \subset B_1, \{x, y_2, y_3\} \subset B_2$ and $\{x, y_1, y_4\} \subset B_3$. Then $B_1 \cap B_2 \cap B_3 \neq \emptyset$. A contradiction with (L1). See Diagram 6a.
 - (ii) If $\neg y_1 R y_2$, then there are three blocks B_1, B_2, B_3 such that $\{x, y_1, y_4\} \subset B_1, \{x, y_2, y_3\} \subset B_2$ and $\{z, y_4\} \subset B_3$. Then (L2) does not hold. See Diagram 6b.
- (3) if $\neg y_2 R y_3$ and $y_3 R y_4$ then the situation is analogous to the previous one,
- (4) $\neg y_2 R y_3$ and $\neg y_3 R y_4$. Then there must exist two points: $z R y_4$ and $w R y_3$ such that $z \not\models p$ and $w \not\models s$. But then there exist three blocks B_1, B_2, B_3 such that $\{x, y_2\} \subset B_1, \{x, y_3\} \subset B_2$ and $\{x, y_4\} \subset B_3$. They are distinct because $y_3 \notin B_1$ and $y_2 \notin B_2$ and $y_3 \notin B_3$ and $y_2 \notin B_3$. And we get $B_1 \cap B_2 \cap B_3 \neq \emptyset$. A contradiction with (L1). See Diagram 7.

The proof of completeness will be provide by Henkin's method. However, it will be provided on the base of the proof of Lemma 1 (below).

Diagram 7

Observation 1. B is a block iff $\forall_x [(x \in B) \Leftrightarrow \forall_{y \in B}(xRy)].$

Corollary 1. If $B_1 \neq B_2$ then there exist $x_1 \in B_1$ and $x_2 \in B_2$ such that $\neg x_1 R x_2$.

Lemma 1. Let \mathfrak{F} be a Kripke frame such that $\mathfrak{F} \models \mathbf{T}, \mathbf{B}, (3'), (A)$. Then \mathfrak{F} is reflexive and symmetric and the conditions (L1) and (L2) hold. *Proof.* Obviously, if in a given Kripke frame there exists a point which is irreflexive, then the axiom **T** is falsified. Also, if in a frame exist two points being in a relation which is not symmetric, then axiom **B** is falsified. Suppose that the condition (L1) does not hold in some reflexive and symmetric Kripke frame $\mathfrak{F} = \langle W, R \rangle$. Then there are three distinct block B_1, B_2 and B_3 such that $x_0 \in B_1 \cap B_2 \cap B_3$ for some x_0 .

We will consider the following two exclusive possibilities:

(1) There are $x_1 \in B_1$, $x_2 \in B_2$, $x_3 \in B_3$ and $\neg x_1 R x_2$, $\neg x_1 R x_3$ and $\neg x_2 R x_3$. See Diagram 8.

We define valuation:

 $V(p) = W \setminus \{x_1\}$ and $V(q) = W \setminus \{x_2\}$ and $V(r) = W \setminus \{x_3\}$. Then we get:

- (2) Suppose that (1) does not hold. Without losing generality we may assume that

$$(*) \qquad B_1 \subseteq B_2 \cup B_3.$$

Since $B_1 \neq B_3$ then there exists an $x_1 \in B_1$ such that $x_1 \notin B_3$. By (*), $x_1 \in B_2$ and there exists another $x_3 \in B_3$ such that $\neg x_1 R x_3$.

Subcase (2a). Suppose that there exists $x_2 \in B_2$ such that $x_2 \neq x_1$ and $\neg x_2 R x_3$. See Diagram 9.

Since $B_1 \neq B_2$ then there exists $y \in B_1 \setminus B_2$. By (*) we have $y \in B_3$ and yRx_1 , see Diagram 10.

 $V(p) = W \setminus \{x_2\}$, and $V(q) = W \setminus \{x_1\}$ and $V(r) = W \setminus \{x_3\}$.

Then we get:

$$y \models_{V} \Box p, \ x_{3} \models_{V} \Box p \land \Box q, \text{ and } y \not\models_{V} \Box p \to \Box q, \ x_{3} \not\models_{V} (\Box p \land \Box q) \to r.$$

Hence $x_{0} \not\models_{V} \Box p, \ x_{0} \not\models_{V} \Box (\Box p \to \Box q) \text{ and } x_{0} \not\models_{V} \Box [(\Box p \land \Box q) \to r].$
And $x_{0} \not\models_{V} (3').$

Subcase (2b). Suppose that for any $x_2 \in B_2$ if $x_2 \neq x_1$ then x_2Rx_3 . Obviously, x_2Rx_1 .

Since $B_1 \neq B_2$ then there exists $y \in B_1 \setminus B_2$. By (*) we have $y \in B_3$, and yRx_1 , and yRx_3 . See Diagram 11.

Formula (3') is true for any valuation. But we falsify formula (A) as follows:

$$V(p) = W \setminus \{y\}, \text{ and } V(q) = W \setminus \{x_3\}$$
$$V(r) = W \setminus \{x_2\} \text{ and } V(s) = W \setminus \{x_1\}.$$

Then $x_2 \models_V \Box p \land q, x_1 \models_V \Box q \land r, x_3 \models_V \Box s \land p \land \Diamond \neg p, y \models_V \Box r \land s \land \Diamond \neg s.$ Also:

$$\begin{array}{c} x_1 \not\models_V (\Box q \wedge r) \to s, \\ x_2 \not\models_V (\Box p \wedge q) \to r, \\ x_3 \not\models_V (\Box s \wedge p \wedge \Diamond \neg p) \to q \\ y \not\models_V (\Box r \wedge s \wedge \Diamond \neg s) \to p. \end{array}$$

And $x_0 \not\models_V (A)$.

Suppose, on the contrary, that the condition (L2) does not hold in some Kripke frame $\mathfrak{F} = \langle W, R \rangle$. Hence there exists at least five points

 x_0, x_1, x_2, x_3, x_4 belonging to three different blocks, i.e. $\{x_1, x_3\} \subset B_1$, $\{x_0, x_1, x_2\} \subset B_2$, $\{x_4, x_5\} \subset B_3$ and $x_3 \notin B_1$ as well as $x_3 \notin B_3$. Then $x_3 \notin (B_1 \cap B_2) \cup (B_2 \cap B_3)$ and $(B_1 \cap B_2) \cup (B_2 \cap B_3) \neq B_2$. See Diagram 2 from correction_kostrzycka2.pdf where $x_1 := y_1, x_2 := x, x_3 := y_4,$ $x_4 := y_2, x_5 := y_3$.

We assume that $\neg x_3 R x_1$ and $\neg x_3 R x_5$. We consider the following situations:

- (1) $x_1 R x_5$.
 - (a) If x_2Rx_5 and x_1Rx_4 , then actually points x_1, x_2, x_4, x_5 belong to the same block, hence there must exist, for example in B_1 other point $z \in B_1$ such that: zRx_1, zRx_2 and $\neg zRx_5$. Now, we take $\{x_1, x_2, z\} \subset B_1$ and $\{x_1, x_2, x_4, x_5\} \subset B_3$. We define a valuation:

$$V(p) = W \setminus \{x_3\} \text{ and } V(q) = W \setminus \{z\}, \text{ and } V(r) = W \setminus \{x_5\}$$

Then $x_5 \models_V \Box p \land \Box q, x_1 \models_V \Box p.$ Also:
 $x_1 \not\models_V \Box p \to \Box q,$
 $x_5 \not\models_V (\Box p \land \Box q) \to r.$

And $x_2 \not\models_V (3')$. This valuation is independent of the assumption if zRx_4 or $\neg zRx_4$. See Diagram 12.

Diagram 12

- (b) If x_2Rx_5 and $\neg x_1Rx_4$. See Diagram 13. The case is analogous to 2a as in Diagram 10.
- (c) If $\neg x_2 R x_5$ and $x_1 R x_4$, then see the above case.

10

(d) If $\neg x_2 R x_5$ and $\neg x_1 R x_4$, then we define valuation: $V(p) = W \setminus \{x_1\}$, and $V(q) = W \setminus \{x_5\}$ and $V(r) = W \setminus \{x_3\}$.

$$x_3 \models_V \Box p \land \Box q$$
, and $x_3 \not\models_V (\Box p \land \Box q) \to r$, and $x_4 \models \Box p$, and $x_4 \not\models_V \Box p \to \Box q$.
Point x_2 sees x_1, x_3 and x_4 then we get:

- $x_2 \not\models_V \Box p, \ x_2 \not\models_V \Box (\Box p \to \Box q), \ x_2 \not\models_V \Box [(\Box p \land \Box q) \to r].$ Hence: $x_2 \not\models_V (3')$. See Diagram 14.
- (2) $\neg x_1 R x_5$. (a) If $x_2 R x_5$ and $x_1 R x_4$, then we define valuation as follows: $V(p) = W \setminus \{x_1\}$ and $V(q) = W \setminus \{x_3\}$, and $V(r) = W \setminus \{x_5\}$.
- $\begin{aligned} x_5 &\models_V \Box p \land \Box q, \text{ and } x_5 \not\models_V (\Box p \land \Box q) \to r, \text{ and } x_3 \not\models \Box p, \text{ and } x_3 \not\models_V \Box p \to \Box q. \\ \text{Also} \\ x_2 \not\models_V \Box p, \ x_2 \not\models_V \Box (\Box p \to \Box q), \ x_2 \not\models_V \Box [(\Box p \land \Box q) \to r]. \\ \text{Hence: } x_2 \not\models_V (3'). \\ \text{(b) If } x_2 R x_5 \text{ and } \neg x_1 R x_4, \text{ then we define:} \\ V(p) = W \setminus \{x_3\} \text{ and } V(q) = W \setminus \{x_5\}, \text{ and } V(r) = W \setminus \{x_1\}. \end{aligned}$
- $x_1 \models_V \Box p \land \Box q$, and $x_1 \not\models_V (\Box p \land \Box q) \to r$, and $x_5 \models \Box p$, and $x_5 \not\models_V \Box p \to \Box q$.

Diagram 15

Also

$$x_2 \not\models_V \Box p, \ x_2 \not\models_V \Box (\Box p \to \Box q), \ x_2 \not\models_V \Box [(\Box p \land \Box q) \to r].$$

Hence: $x_2 \not\models_V (3')$. See Diagram 16 below.

- (c) If $\neg x_2 R x_5$ and $x_1 R x_4$, then see the above case.
- (d) If $\neg x_2 R x_5$ and $\neg x_1 R x_4$, then we define valuation as in (1-d) page 4. See Diagram 17.

Diagram 17

References

 Kostrzycka, Z. (2014) On linear Brouwerian logics, Mathematical Logic Quarterly 60 (4-5): 304-313.