CORRECTION OF THE ARTICLE: ON LINEAR BROUWERIAN LOGICS

ZOFIA KOSTRZYCKA

1. A Shortcut

Definition 1. We say that a frame $\langle W, R\rangle$ consists of linearly ordered blocks if the following two conditions hold:
(L1) $B_{1} \cap B_{2} \cap B_{3}=\emptyset$,
(L2) $\quad\left(B_{1} \cap B_{2} \neq \emptyset \& B_{2} \cap B_{3} \neq \emptyset\right) \quad \Rightarrow \quad\left(B_{1} \cap B_{2}\right) \cup\left(B_{2} \cap B_{3}\right)=B_{2}$ for any three distinct blocks B_{1}, B_{2}, B_{3}

It occurred that the generalized notion of linearity for reflexive and symmetric structures has an adequate syntactic characterization [1]. The following formula is given there:

$$
\left(3^{\prime}\right):=\square p \vee \square(\square p \rightarrow \square q) \vee \square((\square p \wedge \square q) \rightarrow r) .
$$

and the logic: KTB. $\mathbf{3}^{\prime}:=\mathbf{K T B} \oplus\left(3^{\prime}\right)$ is considered. In [1], it is also proven that:

Theorem 1. [Theorem 3.1 from [1]] Logic KTB.3' is complete with respect to the class of reflexive and symmetric frames with linearly ordered blocks. Logic KTB. $\mathbf{3}^{\prime}$ has f.m.p.

THERE IS A MISTAKE IN THE ABOVE THEOREM. BELOW I GIVE ITS CORRECTION.

WE ADD A NEW AXIOM:

$$
\begin{aligned}
& (A):=\square((\square p \wedge q) \rightarrow r) \vee \square((\square q \wedge r) \rightarrow s) \vee \square((\square r \wedge s \wedge \diamond \neg s) \rightarrow p) \vee \\
& \vee \square((\square s \wedge p \wedge \diamond \neg p) \rightarrow q) .
\end{aligned}
$$

AND DEFINE THE LOGIC: KTB.3'A $:=\mathbf{K T B} \oplus\left(3^{\prime}\right) \oplus(A)$.
Theorem 2. Logic KTB.3'A is complete with respect to the class of reflexive and symmetric frames with linearly ordered blocks.

Proof. First we prove the soundness of KTB.3'A with respect to the appropriate relational structures:

If $\vdash_{K T B .3^{\prime} A} \alpha$, then $\mathfrak{F} \models \alpha$; for any Kripke frame $\mathfrak{F} \in \mathcal{L O B}$ and any formula α.

We need to show that in each reflexive, symmetric and linearly ordered Kripke frame, the formulas (3^{\prime}) and (A) are valid. Suppose, on the contrary, that there is a frame $\mathfrak{F}=\langle W, R\rangle$ from $\mathcal{L O B}$ such that $\mathfrak{F} \not \vDash\left(3^{\prime}\right)$. Then there is a point $x \in W$ such that: $x \not \vDash \square p \vee \square(\square p \rightarrow$ $\square q) \vee \square((\square p \wedge \square q) \rightarrow r)$. Hence
(1) $x \not \vDash \square p$ and
(2) $x \not \vDash \square(\square p \rightarrow \square q)$, and
(3) $x \not \vDash \square((\square p \wedge \square q) \rightarrow r)$.

From (1) we conclude that there is a point $y_{1} \in W, x R y_{1}$ such that $y_{1} \not \vDash p$.

From (2) we conclude that there is a point $y_{2} \in W, x R y_{2}$ such that $y_{2} \not \vDash \square p \rightarrow \square q$. Then $y_{2} \models \square p$ and $y_{2} \not \models \square q$. Because $y_{1} \not \vDash p$ and $y_{2} \models \square p$ then we conclude that $\neg y_{2} R y_{1}$. Because $x R y_{2}$ and R is symmetric we get $x \models p$ (hence $y_{1} \neq x$ and $y_{2} \neq x$). Since $y_{2} \not \vDash \square q$ then there is also a point $y_{3} \in W, y_{2} R y_{3}$ such that $y_{3} \not \vDash q$ (y_{3} does not have to be distinct from y_{2}).

From (3) we get that there is a point $y_{4} \in W, x R y_{4}$ such that $y_{4} \not \vDash(\square p \wedge \square q) \rightarrow r$. Hence $y_{4} \vDash \square p \wedge \square q$ and $y_{4} \not \vDash r$. Then $y_{4} \models \square p$ and $y_{4} \models \square q$. We will show that $y_{4} \neq y_{i}$ for $i=1,2,3$ and $y_{4} \neq x$.

- Because $y_{4} \models \square p$ then from reflexivity of R we get $y_{4} \models p$. We know that $y_{1} \not \equiv p$. Then $y_{4} \neq y_{1}$.
- Since $y_{4} \models \square q$ and $y_{2} \not \vDash \square q$ then $y_{4} \neq y_{2}$.
- Suppose that $y_{3} \neq y_{2}$. We know that $y_{4} \models \square q$ and $y_{3} \not \vDash q$. By reflexivity of R we conclude that $y_{4} \neq y_{3}$.
- We have assume that $x \not \vDash \square p$ and $y_{4} \models \square p$. Then $y_{4} \neq x$.

Further we will show that $\neg y_{4} R y_{i}$ for $i=1,3$ (under the assumption that $y_{3} \neq y_{2}$) and $x \models q$ and hence $y_{3} \neq x$.

- Suppose, on the contrary, that $y_{4} R y_{1}$. Since $y_{4} \models \square p$ then $y_{1} \models p$. But this is a contradiction.
- Suppose, on the contrary, that $y_{4} R y_{3}$. Because $y_{4} \vDash \square q$ then we would obtain $y_{3} \vDash q$. A contradiction.
- Because $y_{4} \vDash \square q$ and $x R y_{4}$ (and by symmetry of R) we get $x \models q$. Then $x \neq y_{3}$.
The following two situations are possible:
- $y_{4} R y_{2}$. Then $y_{2} \models q$, so $y_{3} \neq y_{2}$. We get a frame with a sub-frame identical with the one presented in Diagram 1. The condition (L2) of linearity fails in this case.
- $\neg y_{4} R y_{2}$. Then $\left\{x, y_{4}\right\} \subset B_{1},\left\{x, y_{1}\right\} \subset B_{2}$ and $\left\{x, y_{2}\right\} \subset B_{3}$ and $y_{4} \notin B_{3}, y_{2} \notin B_{1}, y_{1} \notin B_{1}$, for three blocks B_{1}, B_{2} and B_{3}. Hence the blocks are distinct. The situation is similar to
the one presented in Diagram 2. We get $x \in B_{1} \cap B_{2} \cap B_{3}$. The condition (L1) of linearity fails. It is not important here, if $y_{3} R x$ or $y_{3} R y_{1}$.
Let us add that if $y_{3}=y_{2}$ then $y_{2} \not \vDash q$. Then $\neg y_{4} R y_{2}$ (since $y_{4} \vDash \square q$). As above, the condition (L1) of linearity fails.

Diagram 1.

Diagram 2.

Suppose then that the formula (A) fails in some $\mathfrak{F}=\langle W, R\rangle \in \mathcal{L O B}$. There is a point $x \in W$ such that
(1) $x \not \vDash \square((\square p \wedge q) \rightarrow r)$ and
(2) $x \not \vDash \square((\square q \wedge r \wedge) \rightarrow s)$, and
(3) $x \not \vDash \square((\square r \wedge s \wedge \diamond \neg s) \rightarrow p)$, and
(4) $x \not \vDash \square((\square s \wedge p \wedge \diamond \neg p) \rightarrow q)$

From (1) we conclude that there is a point $y_{1} \in W, x R y_{1}$ such that $\left.y_{1} \not \models(\square p \wedge q) \rightarrow r\right)$. Hence $y_{1} \models \square p, y_{1} \models q$ and $y_{1} \not \models r$.

Similarly from (2) we conclude that there is a point $y_{2} \in W, x R y_{2}$ such that $\left.y_{2} \not \vDash(\square q \wedge r) \rightarrow s\right)$. Hence $y_{2} \models \square q, y_{2} \vDash r$, and $y_{2} \not \models s$.

Obviously, $y_{2} \neq y_{1}$.

Similarly from (3) we conclude that there is a point $y_{3} \in W, x R y_{3}$ such that $\left.y_{3} \not \models(\square r \wedge s \wedge \diamond \neg s) \rightarrow p\right)$. Hence $y_{3} \models \square r, y_{3} \models s, y_{3} \models \diamond \neg s$ and $y_{3} \not \vDash p$.

Obviously, $y_{3} \neq y_{1}$ and $y_{3} \neq y_{2}$.
Similarly from (4) we conclude that there is a point $y_{4} \in W, x R y_{4}$ such that $\left.y_{4} \not \models(\square s \wedge p \wedge \diamond \neg p) \rightarrow q\right)$. Hence $y_{4} \models \square s, y_{4} \models p$ and $y_{4} \models \diamond \neg p$ and $y_{4} \mid \neq q$.

Obviously: $y_{4} \neq y_{i}$ for $i=1,2,3$.

Diagram 3

Further we notice that: $\neg y_{1} R y_{3}$ and $\neg y_{2} R y_{4}$ (and symmetrically $\neg y_{3} R y_{1}$ and $\neg y_{4} R y_{2}$) because $y_{1} \models \square p$ and $y_{3} \not \models p$ as well as $y_{2} \models \square q$ and $y_{4} \notin q$. Since

$$
\begin{aligned}
& (*) y_{2} \models \diamond \neg s \\
& (* *) y_{4} \models \diamond \neg p
\end{aligned}
$$

then the following four situations are possible:
(1) $y_{2} R y_{3}$ and $y_{3} R y_{4}$ (then $\left(^{*}\right)$ and (${ }^{* *)}$ are fulfilled). Because $\neg y_{1} R y_{3}$ and $\neg y_{2} R y_{4}$ then exist three distinct blocks B_{1}, B_{2}, B_{3} such that $\left\{x, y_{2}, y_{3}\right\} \subset B_{1},\left\{x, y_{3}, y_{4}\right\} \subset B_{2}$ and $\left\{x, y_{1}\right\} \subset B_{3}$. Also $y_{2} \notin B_{2}, y_{4} \notin B_{1}$ and $y_{1} \notin B_{1} \cup B_{2}$. Then $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$. A contradiction with (L1). See Diagram 4.
(2) $y_{2} R y_{3}$ and $\neg y_{3} R y_{4}$ (then $\left({ }^{*}\right)$ is fulfilled). To fulfil $\left({ }^{* *}\right)$ we need a new point z such that $z R y_{4}$ and $z \not \equiv p$. Obviously $\neg z R y_{1}$.
(a) Suppose that $\neg y_{1} R y_{4}$. Then there exist three distinct blocks B_{1}, B_{2}, B_{3} such that $\left\{x, y_{2}, y_{3}\right\} \subset B_{1},\left\{x, y_{4}\right\} \subset B_{2}$ and $\left\{x, y_{1}\right\} \subset B_{3}$. Also $y_{2} \notin B_{2}, y_{4} \notin B_{1}$ and $y_{1} \notin B_{1} \cup B_{2}$. Then $x \in B_{1} \cap B_{2} \cap B_{3}$. A contradiction with (L1). It does not depend on wheatear $z R x$ or $\neg z R x$ nor wheatear $z R y_{i}$ or $\neg z R y_{i}$ for $i=2,3$. See Diagram 5 .

Diagram 4

Diagram 5
(b) Suppose that $y_{1} R y_{4}$.
(i) If $y_{1} R y_{2}$ then there exist three distinct blocks B_{1}, B_{2}, B_{3} such that $\left\{x, y_{1}, y_{2}\right\} \subset B_{1},\left\{x, y_{2}, y_{3}\right\} \subset B_{2}$ and $\left\{x, y_{1}, y_{4}\right\} \subset B_{3}$. Then $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$. A contradiction with (L1). See Diagram 6a.
(ii) If $\neg y_{1} R y_{2}$, then there are three blocks B_{1}, B_{2}, B_{3} such that $\left\{x, y_{1}, y_{4}\right\} \subset B_{1},\left\{x, y_{2}, y_{3}\right\} \subset B_{2}$ and $\left\{z, y_{4}\right\} \subset$ B_{3}. Then (L2) does not hold. See Diagram 6b.
(3) if $\neg y_{2} R y_{3}$ and $y_{3} R y_{4}$ then the situation is analogous to the previous one,
(4) $\neg y_{2} R y_{3}$ and $\neg y_{3} R y_{4}$. Then there must exist two points: $z R y_{4}$ and $w R y_{3}$ such that $z \not \vDash p$ and $w \not \vDash s$. But then there exist three blocks B_{1}, B_{2}, B_{3} such that $\left\{x, y_{2}\right\} \subset B_{1},\left\{x, y_{3}\right\} \subset B_{2}$ and $\left\{x, y_{4}\right\} \subset B_{3}$. They are distinct because $y_{3} \notin B_{1}$ and $y_{2} \notin B_{2}$ and $y_{3} \notin B_{3}$ and $y_{2} \notin B_{3}$. And we get $B_{1} \cap B_{2} \cap B_{3} \neq \emptyset$. A contradiction with (L1). See Diagram 7.
The proof of completeness will be provide by Henkin's method. However, it will be provided on the base of the proof of Lemma 1 (below).

Diagrams 6a and 6b

Diagram 7

Observation 1. B is a block iff $\forall_{x}\left[(x \in B) \Leftrightarrow \forall_{y \in B}(x R y)\right]$.
Corollary 1. If $B_{1} \neq B_{2}$ then there exist $x_{1} \in B_{1}$ and $x_{2} \in B_{2}$ such that $\neg x_{1} R x_{2}$.
Lemma 1. Let \mathfrak{F} be a Kripke frame such that $\mathfrak{F} \models \mathbf{T}, \mathbf{B},\left(3^{\prime}\right),(A)$. Then \mathfrak{F} is reflexive and symmetric and the conditions (L1) and (L2) hold.

Proof. Obviously, if in a given Kripke frame there exists a point which is irreflexive, then the axiom \mathbf{T} is falsified. Also, if in a frame exist two points being in a relation which is not symmetric, then axiom \mathbf{B} is falsified. Suppose that the condition ($L 1$) does not hold in some reflexive and symmetric Kripke frame $\mathfrak{F}=\langle W, R\rangle$. Then there are three distinct block B_{1}, B_{2} and B_{3} such that $x_{0} \in B_{1} \cap B_{2} \cap B_{3}$ for some x_{0}.

We will consider the following two exclusive possibilities:
(1) There are $x_{1} \in B_{1}, x_{2} \in B_{2}, x_{3} \in B_{3}$ and $\neg x_{1} R x_{2}, \neg x_{1} R x_{3}$ and $\neg x_{2} R x_{3}$. See Diagram 8 .

$V(p)=W \backslash\left\{x_{1}\right\} \quad$ and $V(q)=W \backslash\left\{x_{2}\right\} \quad$ and $V(r)=W \backslash\left\{x_{3}\right\}$.
Then we get:
$x_{2} \models_{V} \square p, x_{3} \models_{V} \square p \wedge \square q$, and $x_{2} \not \vDash_{V} \square p \rightarrow \square q, \quad x_{3} \not \models_{V}(\square p \wedge \square q) \rightarrow r$.
Hence $x_{0} \not \models_{V} \square p, x_{0} \not \vDash_{V} \square(\square p \rightarrow \square q)$ and $x_{0} \not \vDash_{V} \square[(\square p \wedge$ $\square q) \rightarrow r]$. And $x_{0} \not \models_{V}\left(3^{\prime}\right)$.
(2) Suppose that (1) does not hold. Without losing generality we may assume that

$$
(*) \quad B_{1} \subseteq B_{2} \cup B_{3} .
$$

Since $B_{1} \neq B_{3}$ then there exists an $x_{1} \in B_{1}$ such that $x_{1} \notin$ B_{3}. By $\left({ }^{*}\right), x_{1} \in B_{2}$ and there exists another $x_{3} \in B_{3}$ such that $\neg x_{1} R x_{3}$.

Subcase (2a). Suppose that there exists $x_{2} \in B_{2}$ such that $x_{2} \neq x_{1}$ and $\neg x_{2} R x_{3}$. See Diagram 9 .

Diagram 9
Since $B_{1} \neq B_{2}$ then there exists $y \in B_{1} \backslash B_{2}$. By $\left(^{*}\right)$ we have $y \in B_{3}$ and $y R x_{1}$, see Diagram 10.

$$
V(p)=W \backslash\left\{x_{2}\right\}, \quad \text { and } V(q)=W \backslash\left\{x_{1}\right\} \text { and } \quad \text { and } V(r)=W \backslash\left\{x_{3}\right\}
$$

Then we get:
$y \models_{V} \square p, \quad x_{3} \models_{V} \square p \wedge \square q$, and $y \not \vDash_{V} \square p \rightarrow \square q, \quad x_{3} \not \vDash_{V}(\square p \wedge \square q) \rightarrow r$.
Hence $x_{0} \not \vDash_{V} \square p, x_{0} \not \vDash_{V} \square(\square p \rightarrow \square q)$ and $x_{0} \not \vDash_{V} \square[(\square p \wedge$ $\square q) \rightarrow r]$. And $x_{0} \not \models_{V}\left(3^{\prime}\right)$.

Subcase (2b). Suppose that for any $x_{2} \in B_{2}$ if $x_{2} \neq x_{1}$ then $x_{2} R x_{3}$. Obviously, $x_{2} R x_{1}$.

Since $B_{1} \neq B_{2}$ then there exists $y \in B_{1} \backslash B_{2}$. By $\left(^{*}\right)$ we have $y \in B_{3}$, and $y R x_{1}$, and $y R x_{3}$. See Diagram 11 .

Formula (3') is true for any valuation. But we falsify formula (A) as follows:

$$
\begin{aligned}
& V(p)=W \backslash\{y\}, \text { and } V(q)=W \backslash\left\{x_{3}\right\} \\
& V(r)=W \backslash\left\{x_{2}\right\} \text { and } V(s)=W \backslash\left\{x_{1}\right\} .
\end{aligned}
$$

Then $x_{2} \models_{V} \square p \wedge q, x_{1} \models_{V} \square q \wedge r, x_{3} \models_{V} \square s \wedge p \wedge \diamond \neg p$, $y=_{V} \square r \wedge s \wedge \diamond \neg s$. Also:

$$
\begin{aligned}
& x_{1} \not \vDash_{V}(\square q \wedge r) \rightarrow s, \\
& x_{2} \not \vDash_{V}(\square p \wedge q) \rightarrow r, \\
& x_{3} \not \vDash_{V}(\square s \wedge p \wedge \diamond \neg p) \rightarrow q, \\
& y \not \vDash_{V}(\square r \wedge s \wedge \diamond \neg s) \rightarrow p .
\end{aligned}
$$

And $x_{0} \not \models_{V}(A)$.

Suppose, on the contrary, that the condition (L2) does not hold in some Kripke frame $\mathfrak{F}=\langle W, R\rangle$. Hence there exists at least five points
$x_{0}, x_{1}, x_{2}, x_{3}, x_{4}$ belonging to three different blocks, i.e. $\left\{x_{1}, x_{3}\right\} \subset B_{1}$, $\left\{x_{0}, x_{1}, x_{2}\right\} \subset B_{2},\left\{x_{4}, x_{5}\right\} \subset B_{3}$ and $x_{3} \notin B_{1}$ as well as $x_{3} \notin B_{3}$. Then $x_{3} \notin\left(B_{1} \cap B_{2}\right) \cup\left(B_{2} \cap B_{3}\right)$ and $\left(B_{1} \cap B_{2}\right) \cup\left(B_{2} \cap B_{3}\right) \neq B_{2}$. See Diagram 2 from correction ${ }_{k}$ ostrzycka $2 . p d f$ where $x_{1}:=y_{1}, x_{2}:=x, x_{3}:=y_{4}$, $x_{4}:=y_{2}, x_{5}:=y_{3}$.

We assume that $\neg x_{3} R x_{1}$ and $\neg x_{3} R x_{5}$. We consider the following situations:
(1) $x_{1} R x_{5}$.
(a) If $x_{2} R x_{5}$ and $x_{1} R x_{4}$, then actually points $x_{1}, x_{2}, x_{4}, x_{5}$ belong to the same block, hence there must exist, for example in B_{1} other point $z \in B_{1}$ such that: $z R x_{1}, z R x_{2}$ and $\neg z R x_{5}$. Now, we take $\left\{x_{1}, x_{2}, z\right\} \subset B_{1}$ and $\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\} \subset$ B_{3}. We define a valuation:

$$
V(p)=W \backslash\left\{x_{3}\right\} \text { and } V(q)=W \backslash\{z\}, \text { and } V(r)=W \backslash\left\{x_{5}\right\}
$$

Then $x_{5} \models_{V} \square p \wedge \square q, x_{1} \models_{V} \square p$. Also:

$$
\begin{aligned}
& x_{1} \not \vDash_{V} \square p \rightarrow \square q, \\
& x_{5} \not \vDash_{V}(\square p \wedge \square q) \rightarrow r .
\end{aligned}
$$

And $x_{2} \forall_{V}\left(3^{\prime}\right)$. This valuation is independent of the assumption if $z R x_{4}$ or $\neg z R x_{4}$. See Diagram 12 .

Diagram 12
(b) If $x_{2} R x_{5}$ and $\neg x_{1} R x_{4}$. See Diagram 13. The case is analogous to 2a as in Diagram 10.
(c) If $\neg x_{2} R x_{5}$ and $x_{1} R x_{4}$, then see the above case.

Diagram 13
(d) If $\neg x_{2} R x_{5}$ and $\neg x_{1} R x_{4}$, then we define valuation:
$V(p)=W \backslash\left\{x_{1}\right\}$, and $V(q)=W \backslash\left\{x_{5}\right\}$ and $V(r)=W \backslash\left\{x_{3}\right\}$.
$x_{3} \models_{V} \square p \wedge \square q$, and $x_{3} \not \models_{V}(\square p \wedge \square q) \rightarrow r$, and $x_{4} \vDash \square p$, and $x_{4} \not \vDash_{V} \square p \rightarrow \square q$.
Point x_{2} sees x_{1}, x_{3} and x_{4} then we get:
$x_{2} \not \vDash_{V} \square p, x_{2} \not \vDash_{V} \square(\square p \rightarrow \square q), x_{2} \not \vDash_{V} \square[(\square p \wedge \square q) \rightarrow r]$.
Hence: $x_{2} \not \vDash_{V}\left(3^{\prime}\right)$. See Diagram 14.
(2) $\neg x_{1} R x_{5}$.
(a) If $x_{2} R x_{5}$ and $x_{1} R x_{4}$, then we define valuation as follows:
$V(p)=W \backslash\left\{x_{1}\right\}$ and $V(q)=W \backslash\left\{x_{3}\right\}$, and $V(r)=W \backslash\left\{x_{5}\right\}$.
$x_{5} \models_{V} \square p \wedge \square q$, and $x_{5} \not \models_{V}(\square p \wedge \square q) \rightarrow r$, and $x_{3} \vDash \square p$, and $x_{3} \not \models_{V} \square p \rightarrow \square q$. Also
$x_{2} \not \vDash_{V} \square p, x_{2} \not \vDash_{V} \square(\square p \rightarrow \square q), x_{2} \not \models_{V} \square[(\square p \wedge \square q) \rightarrow r]$.
Hence: $x_{2} \not \neq V_{V}\left(3^{\prime}\right)$.
(b) If $x_{2} R x_{5}$ and $\neg x_{1} R x_{4}$, then we define:
$V(p)=W \backslash\left\{x_{3}\right\}$ and $V(q)=W \backslash\left\{x_{5}\right\}$, and $V(r)=W \backslash\left\{x_{1}\right\}$.
$x_{1} \models_{V} \square p \wedge \square q$, and $x_{1} \not \models_{V}(\square p \wedge \square q) \rightarrow r$, and $x_{5} \vDash \square p$, and $x_{5} \not \vDash_{V} \square p \rightarrow \square q$.

Diagram 14

Diagram 15

Also
$x_{2} \not \vDash_{V} \square p, x_{2} \not \vDash_{V} \square(\square p \rightarrow \square q), x_{2} \not \vDash_{V} \square[(\square p \wedge \square q) \rightarrow r]$.
Hence: $x_{2} \not \models_{V}\left(3^{\prime}\right)$. See Diagram 16 below.
(c) If $\neg x_{2} R x_{5}$ and $x_{1} R x_{4}$, then see the above case.
(d) If $\neg x_{2} R x_{5}$ and $\neg x_{1} R x_{4}$, then we define valuation as in (1-d) page 4. See Diagram 17.

Diagram 16

Diagram 17

References

[1] Kostrzycka, Z. (2014) On linear Brouwerian logics, Mathematical Logic Quarterly 60 (4-5): 304-313.

